a__g1(X) -> a__h1(X)
a__c -> d
a__h1(d) -> a__g1(c)
mark1(g1(X)) -> a__g1(X)
mark1(h1(X)) -> a__h1(X)
mark1(c) -> a__c
mark1(d) -> d
a__g1(X) -> g1(X)
a__h1(X) -> h1(X)
a__c -> c
↳ QTRS
↳ DependencyPairsProof
a__g1(X) -> a__h1(X)
a__c -> d
a__h1(d) -> a__g1(c)
mark1(g1(X)) -> a__g1(X)
mark1(h1(X)) -> a__h1(X)
mark1(c) -> a__c
mark1(d) -> d
a__g1(X) -> g1(X)
a__h1(X) -> h1(X)
a__c -> c
MARK1(c) -> A__C
MARK1(h1(X)) -> A__H1(X)
MARK1(g1(X)) -> A__G1(X)
A__H1(d) -> A__G1(c)
A__G1(X) -> A__H1(X)
a__g1(X) -> a__h1(X)
a__c -> d
a__h1(d) -> a__g1(c)
mark1(g1(X)) -> a__g1(X)
mark1(h1(X)) -> a__h1(X)
mark1(c) -> a__c
mark1(d) -> d
a__g1(X) -> g1(X)
a__h1(X) -> h1(X)
a__c -> c
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
MARK1(c) -> A__C
MARK1(h1(X)) -> A__H1(X)
MARK1(g1(X)) -> A__G1(X)
A__H1(d) -> A__G1(c)
A__G1(X) -> A__H1(X)
a__g1(X) -> a__h1(X)
a__c -> d
a__h1(d) -> a__g1(c)
mark1(g1(X)) -> a__g1(X)
mark1(h1(X)) -> a__h1(X)
mark1(c) -> a__c
mark1(d) -> d
a__g1(X) -> g1(X)
a__h1(X) -> h1(X)
a__c -> c
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
A__H1(d) -> A__G1(c)
A__G1(X) -> A__H1(X)
a__g1(X) -> a__h1(X)
a__c -> d
a__h1(d) -> a__g1(c)
mark1(g1(X)) -> a__g1(X)
mark1(h1(X)) -> a__h1(X)
mark1(c) -> a__c
mark1(d) -> d
a__g1(X) -> g1(X)
a__h1(X) -> h1(X)
a__c -> c
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__H1(d) -> A__G1(c)
Used ordering: Polynomial interpretation [21]:
A__G1(X) -> A__H1(X)
POL(A__G1(x1)) = 2 + 2·x1
POL(A__H1(x1)) = 2 + 2·x1
POL(c) = 0
POL(d) = 2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
A__G1(X) -> A__H1(X)
a__g1(X) -> a__h1(X)
a__c -> d
a__h1(d) -> a__g1(c)
mark1(g1(X)) -> a__g1(X)
mark1(h1(X)) -> a__h1(X)
mark1(c) -> a__c
mark1(d) -> d
a__g1(X) -> g1(X)
a__h1(X) -> h1(X)
a__c -> c